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Abstract. The connection between the soliton solutions for potentials in 1 + 1 dimensions and
supersymmetry in the context of non-relativistic quantum mechanics is explored. Examining the
equivalence between a supersymmetric partner and the stability equation of theφ6 model, which is
a Schr̈odinger-like equation for the normal modes, we construct two new supersymmetric partners,
which leads us to a new class of isospectral potentials in quantum mechanics and a new class of
potential nonlinear models in bidimensional spacetime. We show that such new potentials in 1 + 1
dimensions are double-well like potentials.

1. Introduction

In a relativistic system of a real scalar field a soliton is a static, non-singular,classically stable
finite localized energy solution of the equation of motion, which has been examined for the
λφ4 [1–4] andφ6 [5] models and investigations of two [6] and three [7] coupled scalar fields
have been made in the context of the stability equations. We implement the well known
Bogomol’nyi condition [8] to find the static field configurations and to make the connection
with an isospectral Hamiltonian for theφ6 model.

The SUSY algebra has also been applied to construct a variety of new one-parameter
families of isospectral supersymmetric partner potentials [9, 10] in quantum mechanics (QM)
which are phase-equivalent [11]. Recently, the connection between SUSY QM and the
topological and non-topological solitons has been established [12–14].

The formalism of SUSY QM and its applications, including its connection with isospectral
potentials, have recently been studied in the literature [15] (for a review see [16]). Recently,
a technique to generate exactly-solvable Schrödinger equations by using second-order shift
operators was presented and, as an example, a two-parameter family of exactly-solvable
Hamiltonians, which contains the Abraham–Moses potential as a particular case has been
considered [17].

In this work we construct a new class of isospectral potentials in 1 + 1 dimensions field
theory by an application of SUSY QM for the soliton of a self-interacting a real scalar field in
1 + 1 dimensions in theφ6 model.
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This work is organized as follows. In section 2, from the Hamiltonian-like operator
associated with the stability equation of theφ6 model we implement the SUSY QM algebra.
In section 3 we consider a second SUSY transformation based on a general unnormalizable
solution to find a new class of potentials in non-relativistic QM. In section 4 we construct
new potentials in field theory which are a new class of double-well like potentials in 1 + 1
dimensions. Section 5 contains the conclusion.

2. SUSY QM and theφ6 model

Let us begin with some known results on the soliton solution in theφ6 model. Using the natural
system of units(c = h̄ = 1), the Lagrangian density for theφ6 model in 1 + 1 dimensions is
written as

L(φ, ∂µφ) = 1

2

(
∂φ

∂t

)2

− 1

2

(
∂φ

∂x

)2

− V (φ) (1)

where

V (φ) = 1

2
λ2φ2

(
φ2 − µ

λ

)2
µ, λ > 0. (2)

Here, the well-behaved potentialV (φ) is a positive semidefinite function ofφ, which possesses
a discrete symmetry (V (φ) = V (−φ)) and three minima to enable a soliton solution to exist.

The equation of motion for a solitonφ = φs (x) becomes

− d2

dx2
φs(x) + λ2φs

(
φ2
s −

µ

λ

) {
3φ2

s −
µ

λ

}
= 0. (3)

Since the potentialV (φ) is positive it satisfies the well known Bogomol’nyi condition [8]

d

dx
φs = ±

√
2V (φs) = ±λφs

(
φ2
s −

µ

λ

)
(4)

where the solution with the minus sign represents the solitonφs(x) and the one with the plus
sign the antisoliton. The soliton solution is given by

φs(x) =
√

1

2

µ

λ
[1 + tanh[µ(x + x0)]] . (5)

Note that ifµ > 1 then the sign ofλ identifies different solutions. Since tanhy → ±1 as
y → ±∞ it is easy to verify the following boundary conditions:φs(x)→ φvacuum2(x) = 0,

asx → −∞ andφs(x) → φvacuum3(x) =
√
µ

λ
, asx → +∞, so that the soliton interpolates

smoothy between these vacua. The other vacuum is negative, namely,φvacuum1(x) = −
√
µ

λ
.

The classical stability of the soliton is ensured by considering small perturbations around
it:

φ(x, t) = φs(x) + η(x, t). (6)

Next, making the standard expansion of the fluctuations in terms of the normal modes,

η(x, t) =
∑
n

εnηn(x)e
iωnt (7)

whereεn are chosen so thatηn(x) are real, the equation of motion becomes a Schrödinger-like
equation in the supersymmetric form:{

− d2

dx2
+W 2(x) +W ′(x)

}
ηn(x) = ωn2ηn(x) (8)
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where the superpotential is given by

W(x) = λ
(
3φ2

s −
µ

λ

)
= µ

2
(3 tanhµx + 1) (9)

and the prime means a first derivative with respect to the argument. The corresponding potential
is given by

V−(x) = W 2 +
d

dx
W(x) = −5

4
µ2 +

3

2
µ2 tanhµx +

15µ2

4
tanh2µx. (10)

The SUSY Hamiltonian in its bilinear form can be readily realized as

HSUSY=
(
H−ss 0
0 H +

ss

)
=
(
A+A− 0

0 A−A+

)
. (11)

The bosonic sector Hamiltonian (H−ss ) satisfies the following anihilation condition for the
ground stateA−η(0)− = 0, η(0)− = η(0)− (x):(
− d

dx
+
µ

2
(3 tanhµx + 1)

)
η
(0)
− = 0⇒ η

(0)
− (x) = N−(1− tanhµx)

√
1 + tanhµx (12)

whereN− =
√
µ

2 is the normalization constant. This ground state is exactly the eigenfunction

of the translational mode of (8), namely,η(0)− (x) ≡ η0(x) = d
dx φs(x).

On the other hand the fermionic sector Hamiltonian(H +
ss) does not have the zero mode

becauseη(0)+ , (
d

dx
+
µ

2
(3 tanhµx + 1)

)
η(0)+ = 0⇒ η(0)+ (x) = N+

√
1 + tanhµx

sech2µx
(13)

is not normalizable. The eigenvalue equations for the supersymmetric partnersH∓ss are
equivalent to those studied in detail in [18].

3. New potential in QM

The principal motivation of this section is to point out the possibility of constructing a new
isospectral potential in QM so as to lead us to deduce new potentials in classical field theories.
Let us now consider a general unnormalizable eigenfunctionηG(x) of H +

ss given by

ηG(x) = η(0)+ (x)

{
α +

∫ x

−∞
[η(0)+ (x̃)]−2 dx̃

}
= N+

√
1 + tanhµx

sech2µx

{
α +

1

2

(
tanhµx − 1

2
tanh2µx

)}
(14)

whereα is an arbitrary parameter andη(0)+ is given by equation (13). A refactorization of the
fermionic sector HamiltonianH +

ss considered now as a new supersymmetric partner

H̃ +
ss = B−B+ = A−A+ = − d2

dx2
+ Ṽ+(x) (15)

with

Ṽ+(x) = V+(x) B+ηG(x) = 0 (16)
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is effected.
By means of a successive SUSY transformation one can construct the supersymmetric

partnerH̃−ss = B+B− of H̃ +
ss , which leads to a class of new isospectral potentials characterized

by an arbitrary parameterα andµ > 0:

Ṽ−(x) = W 2 +W ′ +
f (x)

γ (x)
− g2(x)

γ 2(x)

γ (x) = 2α + tanhµx − 1
2 tanh2µx

g(x) = µ(tanh2µx − 1)(tanhµx − 1)
f (x) = 2µ2(sech2µx tanhµx(tanhµx − 1)− sech4µx).

(17)

Note that ifα 6= 1
4 andα 6= 3

4, Ṽ−(x) is non-singular respectively asx → +∞ and
x → −∞. All eigenvalues ofH̃−ss are eigenvalues ofH−ss , but all eigenvalues other than
that of the ground state of̃H−ss are also eigenvalues of̃H +

ss . From (14), (15) and (17) and the
annihilation condition

B−η̃(0)− (x̃) = 0 B− = (B+)† = − d

dx
− d

dx
`n

{
γ (x)

√
1 + tanhµx

sech2µx

}
(18)

we find that

η̃
(0)
− (x) =

Ñ−
γ (x)

sech2µx√
1 + tanhµx

(19)

which is a normalizable eigenstate ofH̃−ss associated with the zero bosonic mode(ω(0)− = ω0 =
0), whereγ (x) is given in (17) and the normalization constant becomes

Ñ− = 2√
5

√(
2α − 3

2

)(
α +

1

2

)
. (20)

Note that this normalization constant is independent ofµ and η̃(0)− (x) is only non-vanishing
for α 6 − 1

2 or α > 3
4, for Ñ− > 0. Whenα = 0 andx = 0 the solutionη̃(0)− (x) is singular

and therefore cannot be the ground eigenstate ofH̃−ss .
In figures 1 and 2 we plot the potentialsV−(x) andṼ−(x) respectively. Note that in the

region withα 6 − 1
2 andµ = 2 we obtain a well potential around the interval−0.9< x < 0.1.

We see that both the potentialsV−(x)andṼ−(x) tend to finite values asymptotically equal as the
Rosen–Morse potential. In figure 3 we plot the curves representingη̃

(0)
− (x̃) for µ = 2, α = 10

andα = −10 and−η̃(0)− (x̃) for µ = 2, α = −10. The two curves are quite similar since for
|α| � 1 an approximate form for̃η(0)− (x̃) is given by

η̃
(0)
− (x̃) =

(
2

5

)1
2

sgnα
sech2µx√
1 + tanhµx

. (21)

The corresponding density of probability forµ = 2 andα = ±10 is shown in figure 4.

4. Double-well like potentials in 1 + 1 dimensions

From the new potential of̃H−ss can be obtained a new class of potential nonlinear modelsṼ (φ)

in 1 + 1 dimensions. Equations (5) and (17) together define the potentialṼ (φ) as a function of
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Figure 1. The potentialV−(x), for µ = 2. Figure 2. The potentialṼ−(x), forµ = 2 andα = −10.

Figure 3. The wavefunction for the ground state of
η̃
(0)
− (x̃)

817

of Ṽ−(x), for µ = 2 andα = ±10 and−η̃(0)− (x̃), for
µ = 2, α = −10, corresponding to the dotted curve.

Figure 4. The density of probability 5.76 ×
10−3(η̃

(0)
− (x̃)2, for µ = 2 andα = ±10.

φ. Indeed, from equation (5) one getsx = x(φ) so that the explicit form of the new potential
in field theory in 1 + 1 dimensions is given below.

Let us now consider such a new class of potentials in 1 + 1 dimensions as a function of
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Figure 5. The potential (̃V (φ) + 5.5), for the particular case ofλ = 1
2 , 0.88.

the real fieldφ as given by:

Ṽ (φ;m, λ, α) = m2θ2 + aφ2 + bφ4 + cφ6 + dφ8 + eφ10 + pφ12

(θ + 8λmφ2 − 4λ4φ4)2
(22)

where

a = m5λ(480α − 192α2 − 252)
b = m4λ2(1375 + 240α2 − 1928α)
c = λ3m3(2496α − 3344)
d = m2λ4(4024− 992α)
e = −2304mλ5 p = 496λ6

θ = m2(4α − 3).

(23)

Equations (22) and (23) are obtained as follows. Using equation (5) forx0 = 0 one may put

x = 1

µ
tanh−1

(
2λφ2

µ
− 1

)
. (24)

When we substitute this value for the position coordinate in the new potentialṼ−(x) given by
equation (17) it is exactly changed tõV (φ;m, λ, α), after some algebra as shown above.

The potentialṼ (φ;m, λ, α) possesses a discrete symmetryφ → −φ, which must have
at least two different zeros in order to present solitons as solutions. From (22) and condition
λ > 0 we see that the potential̃V (φ) is nonsingular if and only if 0< λ2 < 1

3
4−α

. When

α < − 1
2 this condition becomes 0< λ < 0.89 andθ < −5m2 so that in this case the potential

Ṽ (φ) possesses degenerate minima values and a maximum value. This shows that the curve
has an analogous behaviour as the double-well potential of the kink of theλφ4 theory. This
may be seen from figure 5 when we shift the potential (Ṽ (φ) + 5.5), for the particular case in
thatα = −10,m = 2,−2< φ < 2 andλ = 1

2, 1
100 respectively.

Note that in the regionα < − 1
2 and around the upper limit forλ = 88

100 the double-well
like potential has other values for the vacua and the curve is in the interval−2< φ < 2.
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5. Conclusion

The connection between the soliton solutions of theφ6 model in 1 + 1 dimensions and SUSY
QM has been shown. From the stability equation of such a soliton, which is a Schrödinger-like
equation for the normal modes associated with the potentialV−(x), a new class of potentials
Ṽ−(x) in QM andṼ (φ;m, λ, α) as a function of real fieldφ in the bidimensional spacetime
was constructed. A generalization was found from the potential ofφ6 model. We found that
both the potentialsV−(x) andṼ−(x) are Rosen–Morse like potentials. Other techniques can
be implemented in order to construct a new class of potentials in 1 + 1 dimensions [14].

According to the above analysis for the double-well potential we see that from the stability
equation for the potential̃V (φ;m, λ, α))we can find the following Schrödinger-like potential:

Ṽ− = Ṽ−(x;m,α)
whose explicit dependence is guaranteed if it were possible to solve the equation of motion
for the new class of potentials. In this case the SUSY QM may be considered and, therefore,
the new potential̃V (x;m,α) of H−ss = − d2

dx2 + Ṽ− can be found as another class of potential
nonlinear models in field theory in the bidimensional spacetime, in a way analogous to that
recently implemented for the soliton of theλφ4 theory [4]. Other approaches have also been
independently treated in the literature [14].
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